

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 8233-8234

Tetrahedron Letters

A model study to carbocyclic formycin A and B analogues

Jian Zhou, Minmin Yang and Stewart W. Schneller*

Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA

Received 8 August 2004; accepted 2 September 2004 Available online 25 September 2004

Abstract—An efficient synthesis of carbocyclic formycin analogues has been developed to serve as the foundation for the preparation of a variety of formycin-based antiviral agents.

© 2004 Elsevier Ltd. All rights reserved.

Formycin A (1) and B (2, Fig. 1) are two naturally occurring nucleosides possessing significant antitumor and antiviral activities.^{1,2} These two nucleosides, which are isomeric to adenosine and inosine, respectively, belong to the family of C-nucleosides in which the ribo-furanosyl moiety is linked to the heterocyclic base by carbon–carbon bond at the anomeric center.³ With this C-glycosidic linkage, formycins are enzymatically stable to the action of purine nucleoside phosphorylase (PNP).³ However, the high toxicity associated with these compounds has restricted their development as potential therapeutic agents.

Carbocyclic nucleosides, where the furanose ring oxygen of the more common nucleosides is replaced by a methylene, are also stable to PNP.⁴ A prominent example of this class of compounds is aristeromycin (3), which has shown considerable antiviral potential by inhibiting Sadenosylhomocysteine (AdoHcy) hydrolase.⁵ Combining the C-nucleoside and carbocyclic nucleoside features into one structural entity has received little attention because of the associated synthetic challenges,⁶ including carbocyclic formycin (4).⁷ Therefore, an efficient and expeditious synthetic procedure to carbocyclic C-nucleosides is desirable. In that direction, we wish to report a model study to formycin analogues 5 and 6 starting from a readily available epoxide.

Thus, addition of lithiated 3,3-diethoxy-1-propyne to cyclopentene oxide at $-78 \,^{\circ}\text{C}$ in the presence of BF₃·OEt₂^{8,9} afforded (±)-7 (Scheme 1). Hydrolysis of (±)-7 with a mixture of acetic acid and 10% aqueous hydrochloric acid followed by treatment of the resulting acetylenic aldehyde with hydrazine monohydrate gave a pyrazole derivative,^{10–12} which was acetylated to provide the key intermediate (±)-8. Nitration of (±)-8 with ammonium nitrate and trifluoroacetic anhydride in trifluoroacetic acid following literature conditions¹³

Figure 1.

Keywords: C-nucleosides; Pyrazolo[4,3-d]pyrimidines.

^{*} Corresponding author. Tel.: +1 334 844 5737; fax: +1 334 844 5748; e-mail: schnest@auburn.edu

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.09.007

Scheme 1. Reagents and conditions: (a) i. *n*-BuLi/hexanes; ii. cyclopentene oxide, $BF_3 \cdot Et_2O$, 64%; (b) i. 10% HCl, AcOH; ii. N_2H_4 :H₂O, AcOH; iii. Ac₂O, pyridine, DMAP, 73%; (c) NH₄NO₃, TFA, trifluoroacetic anhydride, 100%; (d) KCN, EtOH, 68%; (e) NaOMe, MeOH, 93%; (f) H₂, Pd/C, MeOH, 100%; (g) HC(=NH)NH₂:AcOH, EtOH, 67% for **5** and 71% for **6**; (h) H₂O₂, MeOH, 77%.

resulted in the dinitropyrazole (\pm)-9. *cine*-Substitution¹⁴ of the *N*-nitro of 9 with a cyano took place in a solution of potassium cyanide in ethanol to give nitronitrile (\pm)-10. Deacetylation of (\pm)-10 to (\pm)-11 was conducted in a solution of catalytic sodium methoxide in methanol. Hydrogenation of (\pm)-11 in the presence of palladium/ carbon afforded a quantitative amount of (\pm)-12. Treatment of (\pm)-12 with formamidine acetate in refluxing ethanol proceeded with ring annulation to (\pm)-(1 β ,2 α)-2-hydroxy-1-(7-aminopyrazolo-[4,3-*d*]pyrimid-3-yl)cyclopentane (5).¹⁵

Oxidation of (\pm) -12 with hydrogen peroxide in methanol provided amide (\pm) -13. After refluxing (\pm) -13 with formamidine acetate in ethanol, (\pm) -(1 β ,2 α)-2-hydroxy-1-(7-hydroxypyrazolo[4,3-*d*]pyrimid-3-yl])cyclopentane (6) was obtained.¹⁶

In summary, an efficient means to carbocyclic formycin analogues has been developed. Application of this pathway employing more functionalized epoxides can produce a comprehensive and diverse library of carbocyclic C-nucleosides as antiviral candidates. This is being pursued in our laboratory and will be reported in due time.

Acknowledgements

This research was supported by funds from the NIH (AI 56540).

References and notes

- Hori, M.; Ito, E.; Takita, T.; Koyama, G.; Tadeuchi, T.; Umezawa, H. J. Antibiot. 1964, 17A, 96–99.
- Koyama, G.; Umezawa, H. J. Antibiot. 1965, 18A, 175– 177.

- Watanabe, K. A. *The Chemistry of C-Nucleosides* In *Chemistry of Nucleosides and Nucleotides*; Towsend, L. B., Ed.; Plenum: New York, 1994; Vol. 3, pp 421–535.
- 4. Rodriguez, J. B.; Comin, M. J. *Mini Rev. Med. Chem.* 2003, *3*, 95–114.
- Yuan, C.-S.; Liu, S.; Wnuk, S. F.; Robins, M. J.; Borchardt, R. T. Adv. Antiviral Drug Design 1996, 2, 41– 88.
- Chun, B. K.; Song, G. Y.; Chu, C. K. J. Org. Chem. 2001, 66, 4852–4858.
- Boyer, S. J.; Leahy, J. W. J. Org. Chem. 1997, 62, 3976– 3980.
- Evans, P. A.; Cui, J.; Gharpure, S. J.; Polosukhin, A.; Zhang, H.-R. J. Am. Chem. Soc. 2003, 125, 14702– 14703.
- Kita, Y.; Futamura, J.; Ohba, Y.; Sawama, Y.; Ganesh, J. K.; Fujioka, H. J. Org. Chem. 2003, 68, 5917–5924.
- Rycroft, A. D.; Singh, G.; Wightman, R. H. J. Chem. Soc., Perkin Trans. 1 1995, 2667–2668.
- 11. Buchanan, J. G.; Quijano, M. L.; Wightman, R. H. J. Chem. Soc., Perkin Trans. 1 1992, 1573–1576.
- Evans, G. B.; Furneaux, R. H.; Gainsford, G. J.; Hanson, J. C.; Kicska, G. A.; Sauve, A. A.; Schramm, V. L.; Tyler, P. C. J. Med. Chem. 2003, 46, 155–160.
- Buchanan, J. G.; Jumaah, A. O.; Kerr, G.; Talekar, R. R.; Wightman, R. H. J. Chem. Soc., Perkin Trans. 1 1991, 1077–1083.
- 14. Buchanan, J. G.; Stobie, A.; Wightman, R. H. Can. J. Chem. 1980, 58, 2624–2627.
- 15. Compound 5: mp 253–255 °C; ¹H NMR (DMSO- d_6) δ 12.40 (s, 1H), 8.16 (s, 1H), 7.29 (br s, 2H), 5.16 (s, 1H), 4.45–4.39 (m, 1H), 3.26–3.18 (m, 1H), 2.13–2.11 (m, 1H), 2.00–1.95 (m, 2H), 1.80–1.75 (m, 2H), 1.62–1.59 (m, 1H); ¹³C NMR (DMSO- d_6) δ 151.0, 150.5, 147.1, 139.6, 121.8, 76.7, 46.0, 33.9, 29.3, 22.0. Anal. Calcd for C₁₀H₁₃N₅O: C, 54.78; H, 5.98; N, 31.94. Found: C, 54.72; H, 5.98; N, 31.75.
- 16. Compound 6: mp 282–284 °C; ¹H NMR (DMSO- d_6) δ 13.78 (br s, 1H), 12.10 (br s, 1H), 7.83 (s, 1H), 4.87 (s, 1H), 4.41–4.37 (m, 1H), 3.22–3.20 (m, 1H), 2.10–2.07 (m, 1H), 1.99–1.89 (m, 2H), 1.79–1.73 (m, 2H), 1.60–1.55 (m, 1H); ¹³C NMR (DMSO- d_6) δ 153.3; 148.0, 141.9, 136.7, 127.2, 76.8, 45.5, 34.1, 29.8, 22.0. Anal. Calcd for C₁₀H₁₂N₄O₂: C, 54.54; H, 5.49; N, 25.44. Found: C, 54.57; H, 5.44; N, 25.38.